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Neural Networks & Deep Learning  
Workshop Report 

EXECUTIVE SUMMARY 

This report analyses the potential of deep learning model applications, more specifically of neural 
networks, in two distinct business applications. First, the performance of Artificial Neural 
Networks is assessed through measures surrounding their predictive accuracy on customer attrition. 
Prior to building a model, the analysis realises Predictive Mean Matching as an effective means of 
imputation for randomly missing numerical values throughout the present dataset. This method 
shows particularly good performance of retaining the distribution of the original dataset. An 
optimised ANN model, after hyperparameter tuning, predicts customer attrition correctly in over 
80% of cases. In the business case at hand, however, this report places greatest importance on 
Recall scores, rather than on overall accuracy. When predicting for customer attrition, it is arguably 
more damaging to predict customers not leaving when they are leaving in reality, compared to the 
other way around. In other words, it is most important to minimise the number of false negative 
predictions, as it makes more sense for businesses to invest a dollar too much into false positive 
predictions, rather than to lose customers because of not placing enough emphasis on false 
negatives. The optimal ANN chosen achieves an out-of-sample Recall score of almost 64%. 
However, these scores differ by around 23% when altering activation functions, suggesting that 
users of ANNs should place high importance on tuning for this hyperparameter. Ultimately, even 
though the ability to identify true attrition at 65% seems improvable, the ANN does outperform a 
simple logistic regression model significantly in this metric. As a next step, performance can 
potentially be enhanced by training on a more balanced dataset regarding the count of the positive 
and negative responses. 

Second, this analysis assesses the potential of both, Simple Recurrent Neural Networks as well as 
Long Short-Term Memory models in closing stock price prediction of Apple stock and argues that 
the closing price as well as the number of past days on which to base model training are significant 
factors to a model’s performance. Moreover, it is suggested that the inclusion of 1) additional 
explanatory variables on pricing information worsen model performance through overemphasising 
pricing levels and of 2) non-price information such as volume provide additional noise to training. 
Users of LSTM models should be wary of the potential limitations in time-series forecasting, 
specifically for the stock market. Most notably, large differences in pricing magnitudes across 
training, validation and testing should be accounted for. As such, an LSTM’s architecture, allowing 
for inference from long sequences of data, might cause the model to place too much importance 
on the comparatively low values from the past. It can be suggested that model training on asset 
returns or on the spread between two asset prices as opposed to training on absolute prices 
mitigates the negative effects of these large discrepancies. In addition, model-based stock price 
prediction is prone not being able to account well for market-inefficiencies, macroeconomic trends 
and large anomalies. Training a Convolutional Neural Network, with less emphasis on the 
sequential nature of time-series data, but rather on additional features at one point in time, can thus 
be suggested as an avenue for future research.  
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Customer Churn 

a) Removing ‘customerID’ during data pre-processing 

The ‘CustomerID’ column was removed for two primary reasons: First, there is no valuable link between 
a customer’s ID and the outcome attrition variable. A model run including this variable would run the risk 
of overfitting on this non-useful information. Second, including this variable would provide noise to the 
training of the ANN and thereby manipulate accuracy metrics derived from predictions. 

b) Missing values 

i) Results of dropping NAs on dataset and the Neural Network training 

NA values were dropped in order to ensure that ANNs could be trained on the dataset, including the provided 
explanatory variables that originally contained missing values. Given that only 11 rows were removed 
following the NA drop (0.156% of the total dataset), this did not affect the distribution of any numerical 
variables to a considerable degree. Hence, the effects on the subsequent training of the neural network are 
negligible. However, it is noteworthy that if missing values were present in a systematic manner, that is 
customers with very distinct characteristics all show NA values in a given variable, dropping all those rows 
might significantly alter model performance. In these cases, imputation, rather than dropping should be 
prioritised.  

ii) Techniques of handling missing values in machine learning 

Replacement with Median or Mean: Simply replacing missing values in continuous variables with the mean 
or median across the values that are present 

Replacement through predictive models: A more sophisticated way of deriving replacement values for NAs 
by treating the variable with missing values as a dependent variable for which one forecasts, for instance 
through various regression techniques 

Models that work during the presence of NA values: Relying on KNN or Random Forests if alternatives are 
infeasible 

iii) Discuss implementation of two of the above-mentioned techniques 

If one compares the results across different techniques of dealing with missing values, it is firstly important 
to define metrics with which one conducts the comparison. In the case at hand, since the columns for which 
NA values are being inserted are all numeric, comparison is done based on histograms. This allows for 
obtaining an idea about the descriptive statistics such as variable distribution, mean, median and skewness. 

Comparing the histograms of the original dataset without inserted NA values and the dataset with dropped 
rows after randomly assigned 35% NA values, it is firstly advantageous to identify that the distributions 
have stayed stable (compare Appendix 1 and 2). This is important, because it indicates that the NA values 
have been assigned in a truly random, as opposed to a systematic, fashion. While the general shape of the 
histograms is very much identical, as one would expect, the count of values is proportionally less after one 
drops NA values. 

Secondly, comparing the two different techniques of replacing NA values, that is mean imputation and 
predictive mean matching, one can argue that here one faces a trade-off between 1) dropping NA values, 
loosing large parts of possibly valuable data, and 2) replacing missing values with possibly non-
representative data. Here, it again makes sense to compare histograms of either two techniques with 
histograms derived from the original dataset. One can observe that imputation based on predictive mean 
matching does a great job at replicating the overall distribution of the original dataset (Appendix 4). At the 
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same time, as one would expect, simply inserting means has obvious shortcomings compared to predictive 
mean matching. Given that the former style of imputation uses the mean of the respective variable as a 
replacement for NA values, the count of values that are equal to the mean gets artificially boosted by around 
12% of the entire number of observations (Appendix 3). For all three variables, this poses significant 
deviations from the statistical metrics of the original dataset. One can conclude that, for the case at hand, 
predictive mean matching is by far the more adequate option compared to dropping missing values and 
simply inserting means. 

c) Why did we perform log-transformation on the ‘TotalCharges’ variable? 

Log transformation on the TotalCharges variable is performed because the distribution of the variable 
values is heavily skewed to the right. As such, a log transformation reduces the impact of and puts less 
importance on heavily outlying values. In essence, logging the values allows for a better linear 
representation of variable values. At the same time, one enhances the predictability of values in the 
TotalCharges variable. 

d) Explain why we centred and scaled the data. 

Data centring and scaling on the entire dataset is performed in order to account for differences in the nature 
of the variable values and make them more comparable. During centring, the mean of a variable is 
subtracted from each respective observation and during scaling, each observation is divided by the standard 
deviation of the variable values. This ensures that data each variable has a mean of 0 (or as close to 0 as 
possible) and a standard deviation of 1. Regardless of the units or the magnitude of the original variable, 
we can now draw more representative inferences about the differences in statistical measures across 
variables. The practice of centring and scaling the data thus has the potential to speed up the learning process 
of the later created ANN to a certain extent. 

e) Activation and loss function and changes in the case of a multi-class classification 

Activation functions in neural networks are used to calculate a weighted sum of the input signals originating 
in previous neurons in order to determine a signals output signal. In the case at hand, the sigmoid function 
is used to determine a classification result by transforming this weighted sum of input signals into number 
close to 0 when the input is small vs. close to 1 when the input is large. Following the output given by the 
activation function at a networks last layer, loss functions start the process of backpropagation, in order to 
update the weights in the neural network. Binary Cross-Entropy is useful in classification problems, as it 
increases the loss incurred the further away the prediction probability is from either 0 or 1 (dependent on 
ground truth response). The resulting loss is then responsible for the degree of the changed weights. 

When classifying for more than two response variables, the loss function will no longer binary. Instead, one 
can engage in cross-entropy for each of the possible response values. For instance, if one runs multi-class 
classification for determining a species of flowers, the neural network would run cross-entropy loss 
functions on each of the possible response values, rather than just on a single binary outcome. This means 
that the chosen sigmoid activation function will output a class probability for every single response, rather 
than for only two. 

f)   

i) Architecture and Parameters of best performing Model 

The parameters on activation function as well as the number of neurons/nodes in the first two hidden layers 
in order to identify a model configuration that minimises the bias-variance trade-off, in other words that 
neither under- nor overfits to a certain extent. The optimal model is composed of two hidden layers, with 
32 nodes and softmax activation function, and an output layer that uses sigmoid as an activation. Learning 
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is performed through stochastic gradient descent, more specifically through the ADAM optimiser. The full 
breakdown of the architecture can be seen in Appendix 5. 

ii) Problems of underfitting or overfitting 

Given their flexibility, neural networks frequently run the risk of overfitting on trained data. If a neural 
network is continuously trained while loss metrics stay consistent for multiple simultaneous epochs, 
overfitting can be assumed. Assessing this risk in Appendix 6, even though loss and accuracy stay constant 
for a couple of epochs, one can argue that the risk of overfitting is mitigated through some preventive 
measures employed. First, the hidden layers are trained with 10% of nodes randomly missing, which 
mitigates a heavy reliance on noise in the data. Second, the activated callback parameter ensures that when 
the model is not learning for five epochs, training will be stopped. Lastly, model evaluation is not based on 
the training set, but rather on a validation and test set, reducing the risk of overfitting on the training set. 

iii) Performance evaluation 

A summary of model performance dependent on the tuned number of neurons in the first two hidden layers 
as well as the activation function can be found in Appendix 7. The performance of the model, and thus the 
choice for optimal hyperparameter values, is based on the Recall metric. Keeping in mind that customer 
attrition is predicted, for a business it would be worse to predict that a customer is not leaving when he/she 
is in reality (false negative) as opposed to predicting that a customer is leaving and it is not in reality (false 
positive). The metric that allows one to evaluate models based on their susceptibility to false negative 
predictions is Recall. Recall is highest at 63.57% when training on softmax activation 1 and 32 neurons. 
Interestingly, this combination of hyperparameters also results in the highest predicted out-of-sample 
accuracy and F1-Score. 

In addition, analysis is conducted on the differences in mean out-of-sample Recall metrics across the 
activation function (Appendix 8) vs. across number of nodes (Appendix 9). Importantly, different activation 
functions, rather than the number of neurons seem to be the determining factor for discrepancies in model 
performance. It can thus be suggested that when predicting attrition, hyper tuning should definitely be 
performed on the chosen different types of activation functions. 

g) Classification accuracy ANN vs. Logistic Regression 

Comparing the hypertuned ANN against a conventional Logistic Regression, performance advantages in 
accuracy are not readily evident. Specifically, one cannot observe a significant increase in out-of-sample 
prediction accuracy of or AUC. However, of particular interest again is the Recall metric which is about 
15% lower when predicting through Logistic Regression. At the same time, it is important to realise that 
the logistic regression has a significant advantage in the interpretability of model parameters and results, 
which can be a crucial advantage in business settings. Especially in the case at hand, being able to identify 
distinct feature importance is crucial to prevent employee attrition. Considering neural networks tendency 
to being black box algorithms, this becomes more difficult 

 

  

 
1 Similar to sigmoid, but with output ranging from -1 to 1 rather than from 0 to 1 
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Stock Price Prediction 

In the case at hand, the predictability of Apple stock prices through the use of Recurrent Neural Networks 
based on historical data starting in 1980 is assessed. As a base model, a Long short-term memory model is 
set up based on the closing prices of the previous three days. The resulting prediction of upcoming day 
closing prices consistently underpredicts the dependent variable. Specifically towards the end of the time-
series, a significant gap between predicted and actual values emerges. 

a) Including multiple predicting variables 

Variable selection is performed by assessing the validation RMSE for 3 distinct pairs of variables (Appendix 
10) to be included in addition to closing price. Optimal performance is achieved when including the 
following two variables: One, a newly defined variable mid, representing the average between each day’s 
high and low price, and two, the trading volume. Compared to our initial base model, including data on 
these independent variables for the past three days alters the predictive accuracy of our model. In statistical 
terms, the use of additional features causes the out-of-sample RMSE to rise by more than 41%. Applying 
the significance of this improvement to the case about stock pricing, the reduced predictive accuracy of this 
magnitude is likely to worsen the quality of decision-making based on this time-series prediction. One can 
observe this worsening along the plotted time-series values as well (compare Appendix 15 to 16). Here, the 
model with the additional parameters underpredicts significantly and is thereby less able to account for the 
underlying daily volatility in the data. Even though this model has not been tuned for yet at all, one major 
conclusion can be suggested: Given that now information about non-price data (i.e. volatility) is used to 
make implications about prices, the model seems to model noise in the additionally included variables and 
is thus less able to draw meaningful inferences about historical patterns compared to a sole reliance on 
closing prices. In addition, one might suggest that the included mid variable, which also adds an additional 
variable on pricing information next to the closing price variable, causes the model to overfit on the training 
data and is thus less able to account for the large jumps in prices following the periods of training and 
validation.  

b) Building Simple RNN 

Compared to the un-tuned LSTM, the simple un-tuned RNN built seems to be better able to predict the 
Apple’s stock price (Appendix 17). Interestingly, this model also shows by far the best validation RMSE 
when volume and mid are included as additional variables in addition to closing price (Appendix 11). Even 
though the resulting implication should be regarded with care before having hyperparameter tuned the 
model, this variable combination seems to be of some value, possibly attributable to the information that 
mid holds about the spread between daily high and low values. 

c) Hyperparametertuning LSTM 

Hyperparametertuning is performed on the optimiser as well as on the number of nodes in the hidden layer 
in order to identify a combination of parameter values that maximises the validation RMSE. Appendix 12 
shows that these RMSEs differ hugely by optimiser chosen and are consistently (aside of one outlying 
observation) lowest for the ADAM optimiser. This suggests that there arises significant value for users of 
LSTM models when optimising for this parameter. At the same time, the number of nodes chosen seems to 
be of less importance to model performance. The hypertuned model is able to lower out-of-sample RMSE 
by over 57% and is significantly more accurate in the long-run (Appendix 18). 

d) Hyperparametertuning RNN 

The analysis does not show a similar picture for the tuned simple RNN, for which performance actually 
worsens compared to the untrained model. Given that hyperparameter tuning is performed on the validation 
set, one can suggest that performance is worse because the variable selection only works well in the limited 
time frame for which the prices seem to be rather different in magnitude to the testing set (Appendix 19). 
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This introduces one to an underlying problem of the stock-prediction case at hand. Appendix 14 shows how 
the magnitude of closing prices largely differs throughout the three different training sets. None of the 
trained models throughout this analysis is able to account for this large difference, suggesting that models 
should be constantly readjusted to account for systematic changes in price levels.  

e) Can we predict for more than one day? 

Appendix 20 shows that the hyperparameter tuned model, predicting two consecutive stock prices on the 
basis of the closing prices of the past 7 days, is the most accurate throughout the entire analysis. This holds 
for both, one day as well as two-day predictions2. As such, this strengthens the above-formed hypothesis 
on variable selection, stating that the additionally included variables on non-closing price information, 
cause the model to be trained to too much noise. In addition, it is arguable that the LSTMs ability to form 
meaningful inferences of long-term relationships, as well as to neglect the impact of information that is not 
useful anymore, is a primary driver of why including a longer explanatory horizon (7 days), is a primary 
driver for this increased accuracy. The potential at this end should be further explored by increasing the 
number of included past closing prices. 

f) Limitations of Deep Learning on predicting stock prices 

Due to LSTM models’ abilities to perform well in sequence prediction problems, it appears natural to engage 
this model in stock price prediction. Through the model’s three-gate-architecture, it is able to selectively 
identify information that is relevant and thereby flush memory from information that is not relevant to the 
underlying predictive accuracy. That being said, even though LSTMs present an upgrade compared to 
conventional simple RNNs, their predictive accuracy is influenced by a number of limiting factors. First, 
the assumption that is being taken in the model at hand is that future performance of a stock is a function 
of its past performance. As such, this neglects the Efficient Market Hypothesis arguing that all available 
information is priced in the stock price at each point in time. Even though markets are arguably not entirely 
efficient in real life, inefficiencies are likely to balance out the longer the investigated time horizon. Thus, 
the accumulation of deviances between predicted and actual prices enlarges over time and the predictive 
accuracy of deep learning models diminishes. A primary driver for this diminishing accuracy is the 
occurrence of anomalies in pricing levels, such as the 2020 drop in prices caused by the outbreak of the 
Corona virus. Ultimately, even though long-term forecasts can provide an idea of the broader direction, it 
becomes apparent that the magnitude in prediction errors rises. 

Second, the performance of employed deep learning models on stock price prediction is heavily dependent 
on the nature of the underlying dataset, which has become apparent throughout the analysis of the case at 
hand. Since training of the model is done only on the beginning stage of the time-series data, trends that 
have emerged over time are not accounted for in the training of the dataset. The impact of this limitation 
can be observed in the prediction of the testing dataset, since the rather abnormal positive spike in stock 
prices after around 2014 is constantly underpredicted, even in tuned models. Here, a focus on returns rather 
than on absolute prices would have the potential to normalise trends over the long run. In essence, it would 
be optimal if underlying testing data was as similar to a random walk as possible, alleviating variances 
explained through by time. In addition, engaging deep learning models on a spread/difference between two 
asset prices, rather than their absolute values could help to drive out trends. Similarly, changes in volatility 
of the underlying asset likely influence the predictive accuracy at each time point. In the case at hand, since 
the model is trained on data that is characterised by a comparatively low volatility, high volatility in the 
testing data seems to be not accounted for to a sufficient extent.  

 
2 Predictive accuracy for day 2 seems to only worsen marginally 
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Appendices 
Appendix 1: Histograms of original Attrition Dataset 

 

Appendix 2: Histograms after dropped NA Values 
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Appendix 3: Histograms after Replacement with Mean Values 

 

Appendix 4: Histograms after Predictive Mean Matching 
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Appendix 5: Architecture of Hyperparameter tuned ANN 

  

Appendix 6: Epoch Learning of Hyperparameter tuned ANN 
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Appendix 7: Hyperparameter tuning Performance Assessment 

 

Appendix 8: Mean Recall by Activation Function 

RANK ACTIVATION RECALL 
1 softmax 0.622 
2 sigmoid 0.599 
3 tanh 0.55 
4 relu 0.547 

 

 

 

 

 

Appendix 9: Mean Recall by Number of Nodes 

RANK ACTIVATION NODES MAX. VAL. 
ACCURACY 

MEAN VAL. 
ACCURACY 

TOP QUANTILE VAL. 
ACCURACY 

TEST 
ACCURACY 

TEST 
AUC 

TEST 
PRECISION 

TEST 
RECALL 

TEST 
F1 

1 softmax 32 0.8033 0.7629 0.7980 0.8088 0.8527 0.6578 0.6357 0.6465 

2 softmax 64 0.8045 0.7621 0.7959 0.8024 0.8525 0.6430 0.6331 0.6380 
3 sigmoid 16 0.8081 0.7569 0.8009 0.8031 0.8526 0.6503 0.6150 0.6321 
4 sigmoid 64 0.8086 0.7998 0.8057 0.8081 0.8524 0.6686 0.5995 0.6322 

5 relu 64 0.8063 0.7965 0.8045 0.8060 0.8467 0.6638 0.5969 0.6286 
6 softmax 16 0.8045 0.7646 0.8024 0.8045 0.8537 0.6600 0.5969 0.6269 
7 sigmoid 32 0.8075 0.7945 0.8048 0.8067 0.8527 0.6716 0.5814 0.6233 
8 tanh 32 0.8086 0.8036 0.8060 0.8088 0.8535 0.6821 0.5711 0.6217 

9 tanh 16 0.8098 0.8030 0.8060 0.8081 0.8533 0.6869 0.5556 0.6143 
10 relu 16 0.8027 0.7964 0.8021 0.8031 0.8497 0.6846 0.5271 0.5956 
11 tanh 64 0.8081 0.8041 0.8054 0.8017 0.8517 0.6812 0.5245 0.5927 

12 relu 32 0.8045 0.7963 0.8021 0.8010 0.8502 0.6826 0.5168 0.5882 

RANK NODES RECALL 
1 64 0.589 
2 32 0.576 
3 16 0.574 
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Appendix 10: LSTM Feature Selection in Addition to Closing Price based on Validation RMSE 

RANK FEATURE 
1 

FEATURE 
2 

VALIDATION 
RMSE 

1 mid volume 0.000185 
2 volume mid 0.000251 
3 mid open 0.002581 
4 volume open 0.003135 
5 open volume 0.004722 
6 open mid 0.005977 

 

Appendix 11: Simple RNN Feature Selection in Addition to Closing Price based on Validation RMSE 

RANK FEATURE 
1 

FEATURE 
2 

VALIDATION 
RMSE 

1 volume mid 0.000424802 
2 mid volume 0.000469017 
3 volume open 0.005976722 
4 mid open 0.011033021 
5 open volume 0.011760925 
6 open mid 0.018648507 

 

Appendix 12: LMSE Validation RMSE by tuned Hyperparameters 

RANK NODES OPTIMIZER VALIDATION 
RMSE 

1 64 adam 0.000179 
2 128 adam 0.000179 
3 32 adam 0.000209 
4 128 RMSprop 0.000236 
5 16 RMSprop 0.000236 
6 64 RMSprop 0.000259 
7 32 RMSprop 0.000339 
8 16 adam 0.00036 
9 128 sgd 0.001087 

10 64 sgd 0.005839 
11 32 sgd 0.016376 
12 16 sgd 0.04486 
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Appendix 13: Simple RNN Validation RMSE by tuned Hyperparameters 

RANK NODES OPTIMIZER VALIDATION 
RMSE 

1 128 adam 0.000308267 
2 64 adam 0.000351195 
3 16 adam 0.000707225 
4 32 RMSprop 0.000715626 
5 32 adam 0.000853488 
6 64 RMSprop 0.000978781 
7 128 RMSprop 0.001052137 
8 64 sgd 0.001557083 
9 16 RMSprop 0.00166617 

10 128 sgd 0.00374183 
11 16 sgd 0.005320844 
12 32 sgd 0.005638265 

 

Appendix 14: Evolution of Apple Stock Closing Prices 
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Appendix 15: Un-Tuned LSTM Closing Price Prediction before Variable Selection 

  

Appendix 16: Un-Tuned LSTM Closing Price Prediction after Variable Selection 
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Appendix 17: Un-Tuned RNN Closing Price Prediction after Variable Selection 
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Appendix 18: Tuned LSTM Closing Price Prediction after Variable Selection 
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Appendix 19: Tuned RNN Closing Price Prediction after Variable Selection 
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Appendix 20: Tuned Two-Day LSTM Closing Price Prediction after Variable Selection 

 

 


